Biodefense Market Report: Vaccines, Therapeutics and Diagnostics for Bioterror Agents

Melanie C. Trull, Tracey V. du Laney, Mark D. Dibner
BioAbility® LLC
Table of Contents

List of Tables .. iv
Foreword .. 1
Chapter 1. Introduction .. 1
 Bioterrorism Agents ... 1
 Genomic Sequencing of Bioterror Agents .. 4
 Understanding Prevention and Treatments for Bioterror Diseases ... 5
 About Incidence .. 6
 About Markets .. 6
 Funding Opportunities ... 7
 Products .. 9
 Companies ... 12
Chapter 2. Resources and Acronyms ... 23
 List of Abbreviations .. 24
Chapter 3. Anthrax .. 27
 Background .. 27
 Incidence .. 28
 Prevention and Treatment .. 29
 Companies and Institutions with Products in Development ... 29
Chapter 4. Botulism ... 49
 Background .. 49
 Incidence .. 49
 Companies and Institutions with Products in Development ... 50
Chapter 5. Plague ... 56
 Background .. 56
 Incidence .. 57
 Plague as a Biological Weapon ... 58
 Companies and Institutions with Products in Development ... 58
Chapter 6. Smallpox .. 68
 Background .. 68
 Companies and Institutions with Products in Development ... 69
Chapter 7. Tularemia .. 88
 Background .. 88
 Incidence .. 88
 Companies and Institutions with Products in Development ... 89
Chapter 8. Arenaviruses ... 92
 Background .. 92
 Incidence .. 92
 Companies and Institutions with Products in Development ... 93
Chapter 9. Hantaviruses and Rift Valley Fever .. 97
 Background .. 97
 Incidence .. 97
 Companies and Institutions with Products in Development ... 98
List of Tables

Table 1. Bioterror agent genomes sequenced ... 5
Table 2. Estimated global market for selected traveler's diseases 7
Table 3. Summary of vaccines in development .. 10
Table 4. Summary of therapeutic agents in development ... 11
Table 5. Bioterror disease areas for companies or institutions covered in this report ... 14
Table 6. Products in development for anthrax ... 30
Table 7. Products in development for botulism ... 50
Table 8. Products in development for the plague ... 59
Table 9. Products in development for smallpox .. 70
Table 10. Products in development for tularemia .. 89
Table 11. Arenaviruses that infect humans ... 92
Table 12. Products in development for arenaviruses .. 93
Table 13. Major bunyaviruses classified as Category A agents 97
Table 14. Products in development for hantaviruses and Rift Valley fever 98
Table 15. Global cases of dengue fever reported by the WHO with geographic distribution... 102
Table 16. Products in development for dengue fever .. 102
Table 17. Products in development against Ebola and Marburg 113
Table 18. Pathogenic Burkholderia bacteria ... 124
Table 19. Products in development for Burkholderia .. 125
Table 20. Products in development for Q fever .. 127
Table 21. Characteristics of three forms of brucellosis ... 128
Table 22. Products in development for brucellosis .. 128
Table 23. Products in development for ricin poisoning ... 131
Table 24. Products in development for SEB ... 135
Table 25. Typhus fever incidence ... 138
Table 26. Products in development for typhus fever ... 139
Table 27. Incidence of food and waterborne bacterial pathogens 141
Table 28. Products in development for food and waterborne bacteria 145
Table 29. Food and waterborne viruses ... 154
Table 30. Selected hepatitis A vaccines on the market ... 155
Table 31. Products in development for food and waterborne viruses 156
Table 32. Protozoans classified as Category B agents .. 158
Table 33. Products in development for food and waterborne protozoa 160
Table 34. Arboviruses that infect humans ... 164
Table 35. Products in development for viral encephalitides 167
Table 36. Incidence of CCHF .. 182
Table 37. Products in development for CCHF .. 183
Table 38. Products in development for yellow fever ... 186
Table 39. Incidence of SARS .. 188
Table 40. Products in development for SARS ... 189
Table 41. Countries that have reported H5N1 in birds since December 2003 201
Table 42. Confirmed avian influenza H5N1 cases in humans as of April 27, 2006 202
Table 43. Vaccines in development for avian influenza .. 203
Table 44. Therapeutics in development to treat avian influenza 205
Chapter 8. Arenaviruses

Background
The arenaviruses are a family of rodent-borne RNA viruses endemic to specific geographic regions around the world. Viral particles are spherical with an average diameter of 110 to 130 nanometers, and they are enclosed in a lipid membrane. Each individual arenavirus is associated with a specific rodent host. For example, Lymphocytic choriomeningitis virus (LCMV) is carried by the common house mouse, *Mus musculus*, and Lassa virus is transmitted by the “multimammate rat” of the genus *Mastomys*.

Incidence
Arenaviruses that infect humans and the resulting diseases are shown in Table 11, along with the geographic region of infection and the incidence of infection.

<table>
<thead>
<tr>
<th>Virus</th>
<th>Disease</th>
<th>Geographic Region</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocytic choriomeningitis virus (LCMV)</td>
<td>Lymphocytic choriomeningitis</td>
<td>Europe, N. and S. America,</td>
<td>Historically underreported, approximately 2-10% of urban dwellers have</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Australia, Japan</td>
<td>serologic evidence of past infection</td>
</tr>
<tr>
<td>Lassa virus</td>
<td>Lassa fever</td>
<td>West Africa</td>
<td>100,000-300,000 per year</td>
</tr>
<tr>
<td>Junin virus</td>
<td>Argentine hemorrhagic fever</td>
<td>Agricultural regions of</td>
<td>Less than 100 cases per year since widespread immunization began</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Argentina</td>
<td></td>
</tr>
<tr>
<td>Machupo virus</td>
<td>Bolivian hemorrhagic fever</td>
<td>Beni province of Bolivia</td>
<td>Sporadic epidemics in Bolivia, most recently 1994 with 9 cases</td>
</tr>
<tr>
<td>Guanarito virus</td>
<td>Venezuelan hemorrhagic fever</td>
<td>Guanarito region of Venezuela</td>
<td>Intermittent epidemics and intermittent cases. Most recent epidemic in 1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>with 104 cases and 26 deaths</td>
</tr>
<tr>
<td>Sabia virus</td>
<td>Brazilian hemorrhagic fever</td>
<td>Brazil</td>
<td>3 cases reported worldwide since discovery in 1994, 2 of which were laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>infections</td>
</tr>
</tbody>
</table>

Arenaviruses typically infect humans who have come into contact with contaminated excretions of infected rodents, either through ingestion of contaminated food or by direct contact with
Arenaviruses

broken skin. Additionally, aerosol transmission of small particle aerosols of virus has been reported from both rodent vectors and infected humans. A few arenaviruses, such as Lassa virus and Machupo virus, also spread person-to-person by direct contact with blood or excretions containing viral particles in home or health care settings.

Some arenaviruses, such as LCMV, can cause meningitis, encephalitis and meningoencephalitis while others, such as Lassa virus, can cause hemorrhagic diseases. The mortality of arenaviruses is generally low, 1 to 10 percent, although during epidemics, mortality can reach 50 percent. LCMV infections have a mortality of less than one percent. Hospital admissions are required for LCMV patients with meningitis and encephalitis, although only supportive care is generally given. Lassa fever is normally mild or asymptomatic in 80 percent of people infected with Lassa virus, with a mortality of less than one percent, although 15 to 20 percent of patients admitted to hospitals for Lassa fever eventually die. Treatment for patients with Lassa fever includes administration of ribavirin, an antiviral drug, and supportive care. A live attenuated Junin viral vaccine has been successfully administered in Argentina, reducing the number of cases of Argentine hemorrhagic fever to less than 100 per year. Ribavirin may be used to treat Argentine hemorrhagic fever as well as Machupo, Guanarito and Sabia viral infections.

Because the symptoms of infection with arenaviruses in the early stages, including fever, malaise, headache, muscle ache, nausea and vomiting, are common to many infectious diseases, cases of arenavirus infection are often undiagnosed and are probably underreported. However, in the U.S., even one case of an arenaviral infection without travel to a region with endemic infection or known contact with a victim from an affected area may represent an act of terrorism. The CDC classifies arenaviruses as Category A agents, the highest priority, for possible use in bioterrorism.

Companies and Institutions with Products in Development

Table 12 lists the companies and universities with products in development as vaccines or therapeutics against arenaviruses. Individual product development details are given in the text following the table.

Table 12. Products in development for arenaviruses

<table>
<thead>
<tr>
<th>Company/Institution</th>
<th>Product Name</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crucell NV</td>
<td>Lassa virus vaccine</td>
<td>Preclinical</td>
</tr>
<tr>
<td>Cyntellect Inc.</td>
<td>Thioaptamer viral hemorrhagic fever therapy</td>
<td>Preclinical</td>
</tr>
<tr>
<td>Idenix Pharmaceuticals Inc.</td>
<td>Hemorrhagic fever virus inhibitor research program</td>
<td>Preclinical</td>
</tr>
<tr>
<td>Peregrine Pharmaceuticals Inc.</td>
<td>Antiviral agent research program</td>
<td>Preclinical</td>
</tr>
<tr>
<td>SIGA Technologies Inc.</td>
<td>Biodefense antiviral research program</td>
<td>Preclinical</td>
</tr>
<tr>
<td>University of Buenos Aires</td>
<td>Junin virus brassinosteroid analogue</td>
<td>Preclinical</td>
</tr>
<tr>
<td>University of Buenos Aires</td>
<td>NSC 20625</td>
<td>Preclinical</td>
</tr>
</tbody>
</table>
Crucell NV (the Netherlands)
Archimedesweg 4
2333 CN Leiden
The Netherlands
Phone: +31 71 5248701
Fax: +31 71 5248702
info@crucell.com
www.crucell.com

Crucell and the NIAID’s Dale and Betty Bumpers Vaccine Research Center (VRC) entered a CRADA in May 2002 to develop an Ebola vaccine. This agreement was expanded to include vaccines against Marburg virus and Lassa virus in August 2002. Under the agreement, NIAID researchers provided Crucell with modified Ebola, Marburg and Lassa genes that are nonpathogenic. Crucell announced in March 2005 that the CRADA with the NIAID had been extended. In the extended CRADA, Crucell and the VRC will continue to develop the Ebola vaccine and use results derived from it in the development of Marburg and Lassa vaccines. The NIAID will provide funding for experiments performed at the VRC and for animal studies performed at USAMRIID. Crucell has the option for exclusive global commercialization rights to the resulting vaccines.

In October 2002, Crucell signed a manufacturing contract with NIAID’s VRC. The manufacturing contract was expected to last for two-and-a-half years. Under the terms of the agreement, Crucell will manufacture clinical grade vaccines for Lassa, Ebola and Marburg viruses. These vaccines will utilize Crucell's AdVac adenoviral vaccine technology and will be produced in Crucell's PER.C6 human cell line.

Cyntellect Inc. (U.S.)
6199 Cornerstone Court, Suite 111
San Diego, CA 92121-4740
Phone: 858-450-7079
Fax: 858-550-1774
E-mail: info@cyntellect.com
www.cyntellect.com

Cyntellect was spun out of Oncosis Inc. in May 2002. In August 2002, the company announced that it had been awarded an SBIR grant for collaborative research with faculty at the University of Texas Medical Branch at Galveston. The grant funds research on the effectiveness of anti-NF-kB thioaptamers against bioterror agents. Thioaptamers are chemically modified DNA decoys. Cyntellect will use its proprietary LEAP technology for high throughput screening of a library of thioaptamers. LEAP loads cells with thioaptamers using laser-based techniques, then screens the injected cells to identify active thioaptamers. Cyntellect reported improved survival in an animal
model of arenavirus-induced hemorrhagic fever following pretreatment with a candidate thioaptamer.

Idenix Pharmaceuticals Inc. (U.S.)
60 Hampshire Street
Cambridge, MA 02139
Phone: 617-995-9800
Fax: 617-995-9801
E-mail: idenix@idenix.com
www.idenix.com

Idenix Pharmaceuticals SARL
Laboratories Idenix
Immeuble LA VIGIE
170 Rue Leon Blum
34 000 Montpellier, France
Phone: +33 4 99 52 22 52
Fax: +33 4 99 52 22 50

Idenix, formerly known as Novirio Pharmaceuticals Ltd., announced a collaboration with the Paris, France-based Institut Pasteur in February 2002. Institut Pasteur planned to evaluate Idenix’s proprietary library of compounds against Ebola, Marburg and Lassa viruses. Institut Pasteur conducts research on arenaviruses in the Jean Mérieux BSL-4 laboratory that is located in Lyon, France. This facility has been administered by INSERM since 2004. Idenix’s principal disease targets include hepatitis B, hepatitis C and HIV/AIDS

Peregrine Pharmaceuticals Inc. (U.S.)
14272 Franklin Avenue, Suite 100
Tustin, CA 92780
Phone: 714-508-6000
Fax: 714-838-5817
www.peregrineinc.com

In November 2003, researchers at the University of Texas Southwestern Medical Center at Dallas received a $1.68 million grant from the NIAID to examine Peregrine’s anti-aminophospholipid antibodies as a potential treatment for Lassa fever. The antibodies direct an immune response to phospholipids in the viral envelope. Arenaviruses were selected as the primary target, but the anti-aminophospholipid antibodies could be effective against other viruses with similar viral envelopes, including smallpox and avian flu. Peregrine was looking for partners for its Lassa fever program in October 2005. One of Peregrine’s monoclonal antibodies, Tarvacin, was effective in a rodent model of Pichinde virus, which is an established model for
Arenaviruses

Lassa fever. A Phase I clinical trial of Tarvacin for the treatment of patients with chronic hepatitis C was initiated in August 2005.

SIGA Technologies Inc. (U.S.)
420 Lexington Avenue, Suite 601
New York, NY 10170
Phone: 212-672-9100
Fax: 212-697-3130
E-mail: info@siga.com
www.siga.com

SIGA acquired selected antiviral programs from ViroPharma Inc. for $1 million in cash plus one million shares of SIGA common stock in June 2004. The programs included lead compounds, assays and scientific knowledge related to the development of antiviral drugs, including drugs targeting smallpox and hemorrhagic fever viruses. In August 2004, SIGA announced that the NIH awarded it two grants for a total of approximately $12 million to support the development of the antiviral program acquired from ViroPharma. The grants specifically support the preclinical development of antiviral products targeting smallpox and arenaviruses, and drug discovery programs for other hemorrhagic fever viruses including Ebola. In March 2006, SIGA and PharmAthene Inc. (Annapolis, Md.) announced plans to merge. The resulting company will operate under the name PharmAthene and focus on biodefense products.

University of Buenos Aires (Argentina)
Departamento de Quimica Biologica
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
Argentina
E-mail: wachsman@qb.fcen.uba.ar

Wachsman et al. published “Antiviral effect of brassinosteroids against herpes virus and arenaviruses” in the journal Antiviral Chemistry and Chemotherapy (2000 Jan;11(1):71-7). The article reported that a natural brassinosteroid and a series of synthetic derivatives were potent inhibitors of arenavirus replication in cell culture. Arenaviruses were susceptible to the brassinosteroid compounds throughout replication.

The University of Buenos Aires is also evaluating NSC 20625, a zinc finger antiretroviral agent that originated at the NIH National Cancer Institute.